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An Algorithm for Fe(y) Using Cubic B-Splines
C6

-

0. Introduction

This note describes an algorithm whereby the distribution of the

Maximum of the Stationary Gaussian Markov Process over an interval may be

computed efficiently. It is an extension of the earlier report (Keilson

and Ross, 1978 [1]) whose notation it employs. The (zeros and residues)

algorithm of the earlier report is one of the starting points for the

development of the new algorithm. The relationship of the old and new

algorithms is described in the first two sections of this note. Section 3

provides some of the methodology of cubic splines and Sections 4 and 5

describe its use in the algorithm. Section 6 contains some comments on

the accuracy and economy of the method.
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1. Problem Statement

The function F (y) can be computed to better than 6 decimal place

accuracy over the half plane 0 5 e < w, -- < y < using a combination

of algorithms. The principal ones are the zeros and residues method for

6 2 1 and series expansions in Or- fore 1. Both these methods require

such lengthy computations for each value of F6 (y) that they do not provide

a practical algorithm in cases where considerable numbers of values of

F (y) are needed cheaply and quickly. Nonetheless. F V) is a simple

and well-behaved function of its arguments. It is monotonically increas-

ing as a function of y for all 6 and monotonically decreasing as a function

of 6 for all y. It therefore seems appropriate to look for some represen-

tation of the function which is easily evaluated and does not require too

many stored constants. The latter requirement rules out the straightforward

idea of simply storing a large table of values and interpolating. Use may

be made of the fact that over much of the O-y plane the function is ade-

quately represented by a simple exponential form, but since in some regions

this does not give even one decimal place accuracy, additions to the single

exponential form are required. Since the principal goals for this algorithm

are low cost, speed and portability rather than high accuracy, it was designed

to be accurate to only 4 decimal places rather than the 6 places achieved by

the earlier, slower methods.
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2. Algorithm Development

Numerical calculation using the slow version of the algorithm shows

the following facts:

(a) For y < -4, F8 (Y) < 0.0001

(b) For y -4 and outside the rectangle 0 5 6 < 4 and -4 < y < 4,

F (y) may be represented to 4 decimal place accuracy by the

expression a(y)exp(-X(y)e), where X(y) is the first zero in the

zeros and residues representation of Fe(y) and a(y) = exp(-0.5 y').

a(y)/(/2V- X(y)). B(y) is the residue of D 5s 1 (-Y)/D s(-y) at

s = -X(y) (c.f. equations (2.11) and (2.10) of the blue 1978

report).

* (c) For y 8, a(y) = 1.0000 and X(y) is given to better than 4 decimal

place accuracy by

y x2/2
X(y) 4 (I/2-) f dx e

0

-[y /2] 2 4 6 8(i/2-)e y/(l + l/y + 3/y + i5/y + l05/y 8)

(d) Within the rectangle 0 5 6 < 4 and -4 < y < 4, Fe(y) may be written

as

Fe(y) = a(y)exp(-X(y)e) + Ge(Y)

where the first term is as in (b) above, and Gs(y) is a correction

term with the following properties:

I. Ge(y) > 0

II. G (y) has a maximum value of less than 0.2 at a point

close to e = 0, y = 0. It falls away from that maximum
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in all directions and in less than 0.0001 on and

outside the three lines y = -4, 0 5 0 5 4; y = 4,

0 5 6 5 4; and 6 = 4, -4< y ! 4.

In view of facts (a), (b), (c) and (d) above, the problem of finding a

concise representation of F (y) becomes one of finding:

I, a representation for X(y) and a(y) for -4 y 8

II, a representation for G0 (y) throughout the area -4 5 y 5 4, 0 5 0 5 4.

In both cases representation in terms of cubic B-splines are used. The next

section is a description of the properties of cubic B-splines needed in the

development of the algorithm.
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3. Cubic B-splines

The material on B-splines used in the development of the algorithms

may be found in Cox [2], Hayes [3] and Hayes and Halliday [4]. This section

summarizes some of the material from [2], [3] and [4].

Cubic splines provide a way of interpolating a function given at a

set of data points using a set of cubic polynomial arcs. More formally,

a cubic spline s(x) on a set of knots T1,12$ ... Tn (T1 < 2 < ... is

a function of x possessing the following two properties.

I. In each of the intervals x s T1 _ x ; T. j = 2 ... n;

Tn x, s(x) is a polynomial of degree 3 or lower.

II. S(x) and its first and second derivatives are continuous. For a

given finite set of knots the set of cubic splines is a finite dimensional

linear space. In the development of algorithms it is useful to work with a

basis set of splines which have a specific form and which lead to an effi-

cient and well-conditioned evaluation algorithm. Then any cubic spline on
k

that knot set has a representation of the form S(x) YiBi(x) where

the set fBIk is the basis set and yi are weights chosen to make S(x)

approximate some desired function f(x).

A commonly used basis set is the set of B-splines which may be defined

as follows (cf. [2], [3], [4] and [5]). The cubic B-spline Bi(x) is the

cubic spline with knots T i-4' Ti-3' T i-2' T i- and Ti. which is zero every-

where except in the range Ti4 < x < T.. This defines B.(x) uniquely except

for an arbitrary scale factor which is conventionally chosen to make

B i (x)dx =.A cubic B-spline looks like a piecewise cubic localized

'hump' function as shown in the dia,'ram below.

A
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Bi(x) (Symmetric for uniformly
spaced knots)

A1s

i 4  T i 3  T i 2  i . 1  "T .
1\1

x

The function and its first two derivatives are zero at the end points.

Though expressions for B1i(x) may be written out explicitly in terms of

powers of x (cf. [4], p. 95), these do not always provide the best method

for evaluating Bi(x) since the calculation may be ill-conditioned if theiI
knot spacing is irregular. A stable method of evaluating B (x) uses

recurrence on the order of the splines. Splines of order n+l are made up

of polynomial arcs of order n, so cubic splines are splines of order 4.

Thus, what has been written as Bi(x) should be written more fully as

B 4j(x). In this notation the recurrence formula to be used (cf. [2],

p. 137, or [3], p. 149, or [4], p. 95) is

(x - T )B n l(X) + (T. - x)B (x)
.()= n-i n-l,i- n-l, i

ni(x) i-n

1/(T - "r if Ti_ 1  5 X < i

with B1 i 0 otherwise
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Because of the local nature of B-splines (see diagram above), for any

given x no more than 4 of the members of the basis set are non-zero. If

x is a knot, only 3 are non-zero. Therefore, to evaluate the cubic spline
k

S(x) =i i Bi(x) at x = T evaluate the 4 B-splines Br(T) = B4,i(r), for

i = j,j+l,j+2,j+3 which are non-zero, using the recurrence at the top of
J+3

the page. Then s(T) = y (BiT). in practice it is convenient to eval-
i

uate the 4 required B-splines together via a calculation scheme which look'

like

Step 1 Step 2 Step 3 Step 4

1 ,j B2  Bj B4 ,j
B 13,j I B 4 j+l

.3,j~l

B3,J+2 B4J+2

B4,j+3

In the above description of how to evaluate a cubic spline, it has been

assumed that the set of weights {yi}k= has been given. In using the spliie
k

S(x) = I YiBi(x) tu approximate a function f(x), an appropriate set of
i=l1

weights must be calculated. There are a number of ways to do that. The o:c

chosen depends on what is to constitute a good approximation of S(x) to f(xi.

For the present purpose, the following method is used. Suppose the functio7

f(x) is to be approximated by the spline s(x) in the interval a : x 5 b.

Choose n+6 knots {T n+6 so that T1 < T < T < -4 = a < T < Tn+3 =

b < Tn+4 < -n+S < n+6' That is, n of the knots are within the set a s x s

and 6 are outside. No values of f(x) are needed for these 6 knots, however.
n+2

Then the desired spline approximation to f(x) is s(x) = i yiBi(x) where

i=l11
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the y are determined by the n+2 condition f(Ti) = s(Ti) for i =4,5...,n+3,
I I I I

f (T4) = S (T4) and f (T n+3) =s (Tn+3), which expresses the fact that the

spline matches the function at the n knots in a 5 x S b, and the derivative

of the spline matches the derivative of the function at the end points.

Since at any knot only 3 of the B-splines Bi(x) are non-zero, the following

set of equations results:

yiBl(14) + y 2 B 2 (T 4 ) + Y3B3 (T4) : f (T4)

YB 1 (T4) + Y2B2 (T4) + Y3B3 (T4) = f(T4)

Y2B2(T5) + Y3B3(TS) + Y4 B4 (T5 ) = f(zs)

yn Bn (Tn+3) + Yn+l Bn+l(n+3) + 7n+2Bn+2(T n+3) = f(t n+3)
(t )+y '( + y B'( !=~

yn Bn (n+3) + Yn+l n+l (n+3 ) + yn+2 Bn+2 (n+3 )  = f (Tn+ 3)

which may be written in matrix form as

By = f

This equation may be solved for the vector y by inverting the matrix B

using a standard Gaussian elimination algorithm. An alternative method

exploits the fact that B is a band matrix with no more than three non-zero

elements in any row and is diagonally dominant so simpler and more efficient

algorithms may be employed with profit. (For details see Ahlberg, Nilson

and Walsh [6], pp. 12-14.) De Boor [5], p. 206 solves the same problem

for more general types of banded diagonally dominant matrices. Thus, using

i*
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any of a number of more or less standard procedures the vector of weights
n+2

,yi~n+2 for the spline approximation S(x) = y.B.(x) to the function
• i=1

f(x) may be computed.

In computing a spline representation the optimal choice of knot posi-

tions which gives highest accuracy for a given number of knots is quite

.1 complicated. For the present purpose, equally spaced knots were used and

2,

their number increased (spacing decreased) until the desired accuracy was
.1

reached. In that connection it may be noted that for cubic splines and

the type of smooth function being approximated, the maximum error in the

representation is proportional to the fourth power of the know separation.

Thus, increasing the number of knots by a factor of 2 improves the accuracy

by a factor of 16.
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4. Spline representations for X(y), a(y) and G0(y)

I. X(y) and a(y). These are functions of the single variable y and

the application of the algorithms of the previous section is straightforward.

The range of y values to be covered was -4 y ! 8. Thirty-four uniformly

spaced knots were used (spacing 8/22 = 0.363636), giving 36 spline coeffi-

cients. Since there is a substantial change in the size of A(y) and a(y)

over the range of y (several orders of magnitude in the case of X(y)), the

functions approximated were log(X(y)) and log(c(y)). The values of the

derivatives at the end points were approximated using a S-point numerical

differentiation formula.

II. G (y) is a function of 2 variables. For each of 23 equally spaced

values of y (y = -4.0 + 8k/22; k = 0,1,...,22), a spline representation of

Ge(y) as a function of /e in the range 0 € 5 2 was computed. ¢k-was

used rather than e since for small e, F8 (y) is proportional to /r. Eight

knots were used with a spacing of 2/7 = 0.285714. This gave 10 spline

coefficients, each of which is a function of y. Each of these functions of

y were then spline fitted using 23 knots giving 2S spline coefficients. On

the e = 0 boundary the derivative G(y) is- exp{-0.5y 2, which is
d/e" a (

obtained from equation (2.18) on page 14 of the blue report and the fact

that d a(yexp(-A(y)0) = 0. Derivatives at boundaries other than e = 0d F6
were computed using S point numerical differentiation. The function G6(y)

is thus represented by an array of 250 coefficients yij indexed from

, = 1, 10 along the Fe dimension and from j = 1, 25 along the y dimension.

The algorithm for the evaluation of G (y) follows a pattern which is

the reverse of what has just been described. Four spline coefficients are
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needed to calculate Go(y) as a function of vr, and they are obtained by

evaluating their spline representation as a function of y. The value of

G (y) is therefore obtained from a 4x4 block of coefficients in the 10x25

array of coefficients {yij i=l,l0;j=l,25. In more detail the procedure is

as follows:

I. Find K, the start index of the y dimension of the 4x4 block of

spline coefficients, from K = integer part of 2.75y + 11.0.

II. Find L, the start index of the 0 dimension of the 4x4 block of

spline coefficients, from L = integer part of 3.5/e-.

III. Evaluate the 4 spline coefficients in the spline representatior

of Go(y) as a function of /- for a given value of y. They are

K+3
Cj= Y YijBi(y) , j = L,I+l,L+2,L+3

i=K

L+3
IV. Evaluate G (y) = j(r)

j-L "

Some economy in the calculation is achieved by having the knot set in

the y dimension of Ge(y) coincide with the knot set used in the representa-

tion of X(y) and a(y) over the range -4 : y < 4.
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5. Later modification to the basic algorithm

After the algorithm described above was completed, it was found that

the accuracy of the values of Fe(y) could be slightly improved by enlarging

the domain over which G e(y) was computed by one knot in each dimension. The

new region for which G 6(y) was computed was thus -4 :5y 5 4.363636,

o 2.285714. This meant that the number of spline coefficients

which had to be stored increased to 11x26 = 286. At the same time, it

was realized that for a considerable area inside that region G 6(y) was con-

siderably less than 0.0001. It seemed appropriate to simply set Ge6(y) to

zero in that area and reduce the number of stored constants y ... The number

of constants was reduced from 286 to 204, and the actual area over which

G e(y) is computed is shown in diagram 1.

The penalty paid for this saving of storage space is that the algorithm

for finding the block of 16 constants for the desired y, a combination is

more complicated. The storage pattern of the y,, no longer falls into a

tidy rectangular grid. Instead, 11 vectors of unequal length are packed

serially in a one-dimensional array. Supplementary arrays are needed to

mark the end points of these vectors. It is questionable whether the rela-

tively modest saving in space is worth the added complexity incurred.
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6. Accuracy and Economy

The knot spacing for the spline representation had been chosen to

make the algorithm accurate to 4 decimal places. Checks were run which

compared the values given by the spline-based algorithm with the earlier,

6 decimal place accuracy algorithm. Comparisons were made on a mesh of

points at y = -4.25(0.05)4.25, 8 = 0.0(0.1)4.5. This grid is considerably

finer than the knot spacing. Another comparison was done at a grid made

up of the mid-points between knots in an attempt to do a worst case com-

parison. In both these comparisons the maximum discrepancy was less than

0.000075.

Since cubic splines are such simple functions (cubics), their evalua-

tion is rapid. In the algorithm 8 B-splines have to be evaluated, and

these can be done in 2 blocks of 4 using the recurrence method. The bulk

of the remainder of the calculation is made up of the evaluation of 2 expo-

nentials, one square root and 7 inner products, each with 4 components.

Speed tests in which 4000 representative values were computed showed that

the algorithm was 35 times faster than the earlier 6 decimal place version

which used Chebychev polynomial approximation, and that in turn was about

30 times faster than the original zeros and residues method. Thus, the

spline method is about 1000 times faster than the zeros and residues method.

On a PDP11/34 with hardware floating point it produces about 200 values/sec.
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